Total Synthesis of (&)-Calanolide A, a Non-Nucleoside Inhibitor of HIV-1 Reverse Transcriptase

Balan Chenera, Michael L. West, Joseph A. Finkelstein, and Geoffrey B. Dreyer'l

Department *of* Medicinal Chemistry, SmithKline Beecham Pharmaceuticals, P.O. Box *1539,* King *of* Russia, Pennsylvania 19406

Received *July 21, 1993.*

Summary: The first syntheses of (\pm) -calanolide A and the related (\pm) -calanolides C and D have been carried out in a short sequence using a Lewis acid-promoted Claisen rearrangement to establish the chromene ring.

The dipyranocoumarins,¹ a group of natural products from several tropical plants of the genus *Calophyllum,* are characterized by coumarin, chromane, and chromene ring systems assembled about a phloroglucinol core. $2-6$ Calanolide A $(1)^6$ and inophyllum B $(2)^4$ are two dipyr-

anocoumarins recently identified in screening assays as potent inhibitors of human immunodeficiency virus-1 reverse transcriptase (HIV-1 RT).^{6,7} As with other nonnucleoside HIV-1 RT inhibitors⁸ such as TIBO⁹ and nevirapine,1° RT mutants resistant to calanolide A and inophyllum B have quickly been found.^{7,11} However, these dipyranocoumarins differ from the other non-nucleosides in the distinct pattern of amino acid changes required to confer resistance,^{7,11} indicating that the RT binding sites for these compounds¹² are overlapping but not identical.

P. *k* Nature **1990,343,470. (10)** Wu, J. C.; Warren, T. C.; Adams, J.; Proudfoot, J.; Skiles, J.;

Palayakotai, R.; Perry, C.; Potocki, I.; Farina, P. R.; Grob, P. M. Biochemistry **1991,3d,'2022.**

S. **H.** J. Virol. **1993, 67, 2412. (11) Boyer,P.L.;Currens,M.J.;McMahon,J.B.;Boyd,M.R.;Hughea,** Further study of dipyranocoumarin analogues and their RT binding site could therefore aid in identifying drugs or drug combinations less prone to eliciting **viral** resistance.

Syntheses of two non-natural dipyranocoumarins, dihydroinophyllolide (3) and dihydrocostatolide **(41,** were described by Polonsky² and Stout³ in connection with their original structure-elucidation studies. Both syntheses **used** methyl ether protection of phloroglucinol to control the regiochemistry of ring formation and a low-yielding Fries rearrangement to establish the 2,3-dimethylbenzopyran ring-conditions likely to be incompatible with the chromene system of the natural products, **as** well **as** impractical for analogue preparation. We describe here a short synthesis of (\pm) -calonolide A that avoids the use of protecting groups.

The coumarin lactone was formed in the first step using a Pechmann reaction¹³ (Scheme I). Product yield and purity were improved by using neat triflic acid in place of the more usual sulfuric acid catalyst, affording **6** quantitatively. Similarly good results were achieved in triflic acid-mediated condensations of phloroglucinol with ethyl acetoacetate and ethyl benzoylacetate, yielding precursors to additional members of the dipyranocoumarin family.^{2,4-6} Friedel-Crafts acylation14 of coumarin **5** with tigloyl chloride then led to a single product, 10 (mp 266-268 °C), in **87%** yield. The regiochemistry of acylation in **10** was established by NOE studies showing reciprocal enhance-
ment between the aromatic proton H_b (δ_{TMS} 6.44 ppm;
CDCL/exetens-del, and both phanolic hydroxyl protons CDCl_3 /acetone- d_6) and both phenolic hydroxyl protons H_a and H_c (δ _{TMS} 9.50, 9.87 ppm). The fortunate regiochemical preference of this Friedel-Crafts reaction thus ensured the desired **final** arrangement of rings and obviated protection stategies. Base treatment of **10** then led in high yield to a 1:l epimeric mixture of 2,3-dimethylbenzopyranones **6.**

Initially we considered that C-acylation of **6** with dimethylacryloyl chloride followed by ring closure and deoxygenation would lead to the chromene ring of the dipyranocoumarins,¹⁵ but this approach was not successful. Compound **6** was too deactivated for Friedel-Crafts reaction, and sodium borohydride reduction of **6** led to complex mixtures. Following esterification of **6** with dimethylacrylic acid, ketone reduction proceeded readily using NaBH₄, but attempted Fries rearrangement of the protected alcohol 11 (AlCl₃, CS₂, PhNO₂)^{2,16} resulted in decomposition.

Abstract published in Advance ACS Abstracts, September **15,1993. (1)** At the advice of a reviewer we **use** the generic name dipyrano- coumarins to describe this group of structurally analogous but etymologically heterogeneous natural products, which includes the inophyl-
lums,^{2,4} costatolide,³ cordatolides,⁵ calanolides,⁶ and others.

⁽²⁾ Polonsky, J.Bull.Soc. Chim.Fr. **1956,914.** Polons&l.;Baskevit.ch, **2.** Bull. *SOC.* Chim. *Fr.* **1968,929.**

⁽³⁾ Stout, G. H.; Stevens, K. L. *J.* Org. Chem. **1964,29,3604.** Stout, G. H.; Hickernell, G. K.; *Sears,* K. D. J. Org. Chem. **1968,33, 4191.**

⁽⁴⁾ Kawazu, K.; **Ohigaahi, H.** Bull. *Znst.* Chem. Res. *Kyoto* Univ. **1972, 50,160.**

⁽⁵⁾ Gunasekera, **5.** P.; Jayatilake, G. S.; **Selliah,** S. S.; Sultanbawa, M. U. *S. J.* Chem. SOC., Perkin Trans. **1 1977,1505.** Dahrmaratne, **H. R.** W.; Sotheeswaran, S.; Balasubramaniam, S.; Waight, E. S. Phytochemistry **1985,24, 1553.**

⁽⁶⁾ Kashman, Y.; Gustafson, K. R.; Fuller, R. W.; Cardellina, J. H.; McMahon, J. B.; Currens, M. J.; Buckhiet, R. W., Jr.; Hughes, S. H.; Cragg, G. M.; Boyd, M. R. J.; Med. Chem. 1992, 35, 2735.

⁽⁷⁾ Taylor, P. B.; Culp, J. **S.;** Debouck, C.; Johnson, **R.** K.; Patil, A. D.; Woolf, D. J.; Bartus, **H.** R.; Brooke, I.; Hertzberg, R. P., submitted for publication.

⁽⁸⁾ DeClercq, E. Med. Res. Rev. **1993,13, 229.**

⁽⁹⁾ Pauwels, **R.; Andries,** K.; Desmyter, A. K.; Schols, D.; Kukla, M. J.; Brealin, H. J.; Raeymaeckers, A.; Van Gelder, J.; Woestenborghs, R.; **Heykants,** J.; Schellenkens, K.: Jannsen, M. A. C.; DeClercq, E.; Janssen,

⁽¹²⁾ Kohlstaedt, **L.** A.; **Wang,** J.; Friedman, J. **M.;** Rice, P. A.; Steitz, **(13)** Sethna, S.; Phadke, R. Org. React. **1913, 7, 1.** T. A. Science **1992,256,1783.**

⁽¹⁴⁾ Friedel Crafts **and** Related Reactions; **Olah,** G. A., **Ed.;** Wdey: New York, **1963;** Vol. **3.**

⁽¹⁵⁾ For examples of chromene synthesis from 2-acyl phenols see ref **¹⁷**and Buckle, D. R.; Arch, J. R. S.; Fenwick, A. E.; Houge-Frydrych, C. S. V.; Pinto, I. **L;** Smith, D. G.; Taylor, S. G.; Tedder, J. M. *J.* Med. Chem. **1990,33,3028.** A somewhat related chromene synthesis involvee condensation of α , β -unsaturated aldehydes with phenols: Clarke, D. G.; condensation of *α*,*p*-unsaturated aldenydes with phenois: Clarke, D. G.;
Crombie, L.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1 1974, 1007. **(16)** Blatt, A. **H.** Org. React. **1964,** I, **342.**

^{0022-3263/93/1958-5605\$04.00/0} *0* **1993** American Chemical Society

Scheme **1.**

^{*a*} Key: (a) $C_8H_7COCH_2CO_2Et$, CF_3SO_3H (neat), $0 \rightarrow 25$ °C, 16 h (99%); (b) tigloyl chloride, AlCl₃ (4 equiv), CS₂, PhNO₂, 75 °C, 14 h (87%); (c) KZCOa, 2-butanone, 70 "C, 2 h (89%); **(d) 3-chloro-3** methyl-1-butyne (5 equiv), ZnClz **(1.3** equiv), KzCOa (2.5 equiv), **(n-**Bu)₄NI (1 equiv), 2-butanone/DMF/Et₂O (10:1:1), 70 °C, 16 h ((±)-7, 34%; (±)-8,27%); (e) NaBH₄ (2 equiv), CeCl₃(H₂O)₇ (1 equiv), EtOH, 25 OC (59%); *(0* **NaB&,** EtOH, 25 "C **(100%).**

We next examined a Claisen rearrangement approach to the chromene. Aryl propargyl ethers typically undergo Claisen rearrangement at 160-215 °C to form o-allenylphenol intermediates, which cyclize to chromenes.¹⁷ In the case of **6,** standard conditions for dimethylpropargyl ether formation (3-chloro-3-methyl-1-butyne, K₂CO₃, KI or (n-Bu)₄NI, 10% DMF in Me₂CO or 2-butanone, 50-70 ^oC)¹⁷ led to no reaction. However, addition of anhydrous zinc chloride to the reaction mixture resulted in clean formation of chromenes (\pm) -7 (mp 130-132 °C) and (\pm) -8 (mp **130-131** OC) in a **1.3:l** ratio and **61** % combined yield after chromatographic separation. Without $(n-Bu)_{4}NI$ the reaction proceeded less cleanly and in lower yield, and omitting K_2CO_3 resulted in gradual decomposition with

no apparent product formation. We were unable to detect the presumed propargyl ether intermediate, but the mild reaction conditions (70 **"C)** suggest that both propargyl ether formation and Claisen rearrangement are catalyzed by zinc chloride.¹⁸ Claisen rearrangements of allyl aryl ethers are strongly catalyzed by a variety of Lewis acids¹⁹ including $ZnCl_2$, BCl_3 , Et_2AICl , and $TiCl_4$, as well as protic acids.20 In addition, rearrangement of aryl propargyl ethers to chromenes has been shown to be catalyzed by mercury and silver salts 21,22 and by AlCl_3 . 22

The ¹H NMR and mass spectral data for compound **(*)-a** were identical with those reported for calanolide D.8 Sodium borohydride reduction of **(&)-8** proceeded **quan**titatively to (\pm) -9 (mp 54-56 °C), whose spectral data matched those of calanolide C.^{6,23} Sodium borohydride reduction of ketone (\pm)-7 was less selective, affording a 7:3 mixture of (\pm) -calanolide A $((\pm)$ -1) and its hydroxy epimer (90% yield), which were not easily separable. However, Luche reduction²⁴ of ketone (±)-7 was highly stereoselective, providing (\pm) -1 (mp 56-58 °C) in 59% yield (unoptimized) after chromatography, with the remainder consisting mainly of polar material. The lH NMR and mass spectra of $(±)$ -1 were in full agreement with the data reported for natural calanolide A ,⁶ Additionally, (\pm) -1 proved to be a highly potent inhibitor of purified HIV-1 RT.²⁵ This five-step synthesis of (\pm) -calanolide A (ca. **15%** overall yield) forms a practical basis for medicinal chemical studies of thedipyranocoumarin class of potential AIDS therapeutics.

Acknowledgment. We thank Nicholas J. Dixon for helpful discussions about the conditions for chromene synthesis. We **also** thank Steven A. Carr for mass spectral analyses, Priscilla H. Offen for assistance with NMR spectroscopy, and Edith A. Reich for elemental analyses.

Supplementary Material Available: Experimental procedures, **40()-MHz 'H NMR** and mass spectra, and elemental analysis data for compounds **(*)-l, 8,6, (f)-7,** *(A)-&* **(&)-9,** and **10 (4** pages). **This** material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the **ACS;** see any current masthead page for ordering information.

(21) Koch-Pomeranz, **U.;** Hamen, H.-J.; Schmid, H. *Helu. Chim.* Acta **1973,56,2981.**

(22) Bates, D. K.; Jones, M. C. J. *Org. Chem.* **1978,43, 3856. (23)** There **ia** one discrepancy, which **we assume** to be a typographical error in ref **6** or an artifact. The 'H *NMR* chemical **shift** of chromene error in ret 6 or an artifact. The 'H NMR chemical shift of chromene proton H_s in (\pm)-9 at 400 MHz (δ 6.63, in CDCl₃) disagrees with the reported value⁶ for H_s in calanolide C at *500 MHz* (δ 6.83, in CDCl

(24) Gemal, A. L.; Luche, J.-L. J. Am. Chem. Soc. 1981, 103, 5454.
(25) Taylor, P. B. Personal Communication. More detailed potency and mechanistic comparisons between natural and synthetic calanolide A are currently underway.

⁽¹⁷⁾ Iwai, I.; Ide, J. *Chem. Pharm.* Bull. **1962, 10,926.** Zsindely, J.; Schmid, H. Helv. Chim. Acta 1968, 51, 1510. Hlubucek, J.; Ritchie, E.;
Taylor, W. C. Aust. J. Chem. 1971, 24, 2347. Harfenist, M.; Thom, E.
J. Org. Chem. 1972, 37, 841. Anderson, W. K.; LaVoie, E. J. J. Org. Chem.
1973, 38 N.; Jones, P. **S.** *Tetrahedron Lett.* **1991,811.** Brown, **P. E.;** Lewis, **R.** A. J. *Chem.* Sac., *Perkin Dam. 1* **1992, 673.**

⁽¹⁸⁾ We have not ruled out **the** alternative mechanism of Friedel-Crafts alkylation to form an o-allenyl phenol, followed by ring closure. However, there is ample precedent for **the** Claieen rearrangement pathway to the chromene.¹⁹⁻²²

⁽¹⁹⁾ Karrer, P.; Fritzeche, H.; Rier, B. H.; Salomon, H. *Helu. Chim.* Acta **1938.21.620.** Smith.L. I.: Unmade. H. E.:Prichard. W. W. *Science* **1938,88,37.** Fahmi, **P.;** Habich, A:; Schbid, **H.** *Helv. Chim.* Acta **1960, 43,448.** Sonnenberg, F. M. *J. Org. Chem.* **1970,96,3166.** Wherli, P. A.; Fryer, R. I.; Metlesics, W. *J. Org. Chem.* **1971,36,2910. Borgulya,** J.; **Madeja,R.;Fahmi,P.;Haneen,H.-J.;Schmid,H.;Barner,R.** *Helu.Chim.* Acta 1973, 56, 14. Schmid, M.; Hansen, H.-J.; Schmid, H. Helv. Chim.
Acta 1973, 56, 105. Narasaka, K.; Bald, E.; Mukaiyama, T. Chem. Lett.
1975, 1041. Tachibana, Y. Bull. Chem. Soc. Jpn. 1977, 50, 2477.
(20) Karrer, P.; Fr

Acta 1938, 21, 1234. Widmer, U.; Hansen, H.-J.; Schmid, H. Helv. Chim.
Acta 1973, 56, 2644. Svanholm, U.; Parker, V. D. J. Chem. Soc., Perkin
Trans. 2 1974, 169. Ismail, F. M. D.; Hilton, M. J.; Stefinovic, M. *Tetrahedron Lett.* **1992,3795.**